

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATIO	N: Bachelor of science in A	pplied Mathematics and Statistics
QUALIFICATIO	N CODE: 35BAMS	LEVEL: 6
COURSE CODE: NUM701S		COURSE NAME: NUMERICAL METHODS 1
SESSION:	JUNE 2019	PAPER: THEORY
DURATION:	3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	Dr S.N. NEOSSI NGUETCHUE	
MODERATOR:	Prof S.S. MOTSA	

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations. All numerical results must be given using 5 decimals where necessary unless mentioned otherwise.
- 3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Attachments None

QUESTION 1 [30 Marks]

1.1. Given the function

$$f(x) = \frac{1}{1+x^3}$$

- 1.1.1 Find the third-degree Taylor polynomial for f(x) about $x_0 = 0$ and use it to approximate [13 pts] f(2). Find the error in this approximation and indicate if this is a good approximation. Justify your answer.
- 1.2. Newton's method applied to the equation $f(x) = x^3 x = 0$ takes the form of the iteration

$$x_{k+1} = x_k - \frac{x_k^3 - x_k}{3x_k^2 - 1}, \ k = 0, 1, 2, \dots$$

- 1.2.1 Study the behaviour of the iteration when $x_0 > 1/\sqrt{3}$ to conclude that the sequence $\{x_k\}_{k\geq 0}$ [7 pts] approaches the same root as long as you choose $x_0 > 1/\sqrt{3}$.
- 1.2.2 Assume $-\alpha < x_0 < \alpha$. For what number α does the sequence always approach 0? [5 pts]
- **1.2.3** For an arbitrary f(x), suppose that $f'(x)f''(x) \neq 0$ in an interval [a, b], where f''(x) is continuous and $f(a) \times f(b) < 0$. Show that if f'(x)f''(x) > 0, for $x_0 \in [a, b]$, then the sequence $\{x_k\}_{k\geq 0}$ generated by Newton's method converges monotonically to a root $\alpha \in [a, b]$.

QUESTION 2 [40 Marks]

- **2.1.** Write down in details the formulae of the Lagrange and Newton's form of the polynomial that interpolates a function f at the set of data points $(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))$.
- **2.2.** Use the results of the previous question to determine The Lagrange and Newton's forms of the polynomial that interpolates a function at the points (0,5), (2,15) and (4,41).
- **2.3.** If using the following formula to compute an approximation of f'(x): [15 pts]

$$f'(x) \approx \frac{1}{12h} \left[-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) \right],$$

find the order of convergence as $h \to 0$.

QUESTION 3 [30 Marks]

3.1. Given the Initial-value problem (IVP)

$$y' = t + \frac{3y}{t}$$
, $1 \le t \le 2$, $y(1) = 0$

- **3.1.1** Write down in details the second-order Runge-Kutta (RK2) algorithm to solve the specific [5 pts] IVP given above.
- **3.1.2** Compute an approximation to y(2) after three iterations using the algorithm given in the [10 pts] previous question.
- **3.1.3** The exact solution to the above IVP is $y(t) = t^3 t^2$. Show that the RK2 method is [15 pts] second-order accurate.

END OF PAPER TOTAL MARKS: 100